Bridge Cohomology

Jon Belcher
University of Colorado Boulder

K-Theory Conference
Argentina 2018

Preliminaries

Complexes

For any \mathbb{l}_{k}-algebra A and any A-bimodule M we have the Hochschild and Bar cochain complexes $C^{\bullet}(A, M)$ and $C_{\text {bar }}^{\bullet}(A, M)$, given by

$$
\begin{aligned}
C^{\bullet}(A, M): & =M \xrightarrow{b} \operatorname{Hom}(A, M) \xrightarrow{b} \ldots \\
& \xrightarrow{b} \operatorname{Hom}\left(A^{\otimes n}, M\right) \xrightarrow{b} \operatorname{Hom}\left(A^{\otimes n+1}, M\right) \xrightarrow{b} \ldots
\end{aligned}
$$

$$
\begin{aligned}
b \varphi\left(a_{1}, \ldots, a_{n+1}\right)= & a_{1} \varphi\left(a_{2}, \ldots, a_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right) \\
& +(-1)^{n+1} \varphi\left(a_{1}, \ldots, a_{n}\right) a_{n+1}
\end{aligned}
$$

Preliminaries

Complexes

For any \mathbb{k}-algebra A and any A-bimodule M we have the Hochschild and Bar cochain complexes $C^{\bullet}(A, M)$ and $C_{\text {bar }}^{\bullet}(A, M)$, given by

$$
\begin{aligned}
C_{\mathrm{bar}}^{\bullet}(A, M) & :=M \xrightarrow{b^{\prime}} \operatorname{Hom}(A, M) \xrightarrow{b^{\prime}} \ldots \\
& \xrightarrow{b^{\prime}} \operatorname{Hom}\left(A^{\otimes n}, M\right) \xrightarrow{b^{\prime}} \operatorname{Hom}\left(A^{\otimes n+1}, M\right) \xrightarrow{b^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
b^{\prime} \varphi\left(a_{1}, \ldots, a_{n+1}\right)= & a_{1} \varphi\left(a_{2}, \ldots, a_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} \varphi\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right)
\end{aligned}
$$

Preliminaries

Maps

Acting on the modules $C_{(\text {bar })}^{n}(A)$ we have the cyclic operator

$$
\begin{gathered}
\lambda: C_{(\text {bar })}^{n}(A) \rightarrow C_{(\text {bar })}^{n}(A) \\
\lambda \varphi\left(a_{0}, \ldots, a_{n}\right)=(-1)^{n} \varphi\left(a_{n}, a_{0}, \ldots, a_{n-1}\right)
\end{gathered}
$$

From this we can also create the norm operator

$$
\begin{gathered}
Q: C_{(\mathrm{bar})}^{n}(A) \rightarrow C_{(\mathrm{bar})}^{n}(A) \\
Q=\sum_{i=0}^{n} \lambda^{i}
\end{gathered}
$$

Preliminaries

Maps

These operators have the following relationships with the differentials b and b^{\prime} :

$$
(1-\lambda) b=b^{\prime}(1-\lambda) \quad Q b^{\prime}=b Q
$$

Thus we get chain maps

$$
\begin{gathered}
(1-\lambda): C^{\bullet}(A) \rightarrow C_{\mathrm{bar}}^{\bullet}(A) \\
Q: C_{\mathrm{bar}}^{\bullet}(A) \rightarrow C^{\bullet}(A)
\end{gathered}
$$

When \mathbb{k} contains \mathbb{Q} the sequence is exact

$$
\ldots \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} \ldots
$$

Preliminaries

Cohomologies

When A is a unital algebra, the Hochschild cohomology of A valued in M is defined as the cohomology of the complex $C^{\bullet}(A, M)$

$$
\begin{gathered}
H H^{\bullet}(A, M):=H^{\bullet}(C(A, M)) \\
H H^{\bullet}(A):=H^{\bullet}\left(C\left(A, A^{*}\right)\right)
\end{gathered}
$$

For any algebra A (not necessarily unital) the bar cohomology of A (with coefficients in M) is the cohomology of the complex $C_{\text {bar }}^{\bullet}(A)$ (or $C_{\text {bar }}^{\bullet}(A, M)$)

$$
\begin{gathered}
H B^{\bullet}(A, M):=H^{\bullet}\left(C_{\mathrm{bar}}(A, M)\right) \\
H B^{\bullet}(A):=H^{\bullet}\left(C_{\mathrm{bar}}\left(A, A^{*}\right)\right)
\end{gathered}
$$

Preliminaries

Cohomologies

When A is non-unital, we extend the functor HH^{\bullet} by defining

$$
H H^{\bullet}(A)=\operatorname{ker}\left(H H^{\bullet}\left(A_{+}\right) \rightarrow H H^{\bullet}(\mathbb{k})\right)
$$

where A_{+}is the algebra obtained by adjoining a unit to A.

Preliminaries

Normalized and Reduced Complexes

Definition

For a unital algebra A, the normalized Hochschild complex is given by

$$
\begin{gathered}
\bar{C}^{n}(A):=\left\{\varphi \in C^{n}(A) \mid \varphi\left(a_{0}, \ldots, a_{n}\right)=0 \text { if some } a_{i} \in \mathbb{k}, 1 \leq i \leq n\right\} \\
0 \rightarrow \bar{C}^{\bullet}(A) \rightarrow C^{\bullet}(A) \rightarrow D^{\bullet}(A) \rightarrow 0
\end{gathered}
$$

where the degenerate complex $D^{n}(A)$ is the set of functionals

$$
D^{n}(A):=\left\{\varphi \mid \varphi\left(a_{0}, \ldots, a_{n}\right) a_{i}=1, \text { for some } 1 \leq i \leq n\right\}
$$

that extend to $C^{n}(A)$.

Preliminaries

Normalized and Reduced Complexes

Define \AA_{A} as the following cokernel

$$
0 \longrightarrow \bar{A}^{*} \longrightarrow A^{*} \longrightarrow \AA_{A} \longrightarrow 0
$$

determined by the image of the evaluation map $e v_{1}: A^{*} \rightarrow \mathbb{k}$, where $\varphi \mapsto \varphi(1)$.
Definition
The Reduced Hochschild cochain complex for a unital algebra A is defined as the kernel

$$
0 \rightarrow C^{\bullet}(A)_{\mathrm{red}} \rightarrow \bar{C}^{\bullet}(A) \rightarrow \AA_{A}[0] \rightarrow 0
$$

where ${ }_{j_{A}}[0]$ is the cocomplex with ${ }_{j} A$ in degree 0 .

Preliminaries

Normalized and Reduced Complexes

The reduced Hochschild cohomology is then

$$
\overrightarrow{H H^{\bullet}}(A):=H^{\bullet}\left(C^{\bullet}(A)_{\text {red }}\right)
$$

Corollary
For a non-unital algebra $A, H H^{n}(A)=H^{n}\left(C\left(A_{+}\right)_{\text {red }}\right)$.

Cyclic Cohomology

Connes Complex

Definition
The Connes complex $C_{\lambda}(A)$ is given as the kernel of $1-\lambda$:

$$
0 \rightarrow C_{\lambda}(A) \rightarrow C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A)
$$

The "Cyclic" Cohomology of A is then $\left.H_{\lambda}^{\bullet}(A):=H^{\bullet}\left(C_{\lambda}(A)\right)\right)$.

Cyclic Cohomology

Cyclic Bicomplex

Definition
For any algebra A the cyclic cobicomplex ${C C^{\bullet \bullet}}^{\bullet}(A)$ is the bicomplex

The $n^{\text {th }}$ cyclic cohomology of A is then

$$
H C^{n}(A):=H^{n}\left(\operatorname{Tot} C C^{\bullet \bullet}(A)\right)
$$

Cyclic Cohomology

Cyclic Bicomplex

Proposition

Let $C_{\bullet \bullet} \rightarrow C_{\bullet \bullet}^{\prime}$ be a map of bicomplexes which is a quasi-isomorphism when restricted to each column. Then the induced map on the total complexes is a quasi-isomorphism.

Thus, when \mathbb{k} contains \mathbb{Q} we have $H_{\lambda}^{\bullet}(A) \cong H C^{\bullet}(A)$.

Cyclic Cohomology

Gysin-Connes Sequence

The long exact sequence relating cyclic cohomology with Hochschild cohomology is given by the Gysin-Connes sequence:

$$
\ldots \xrightarrow{l} H H^{n-1}(A) \xrightarrow{B} H C^{n-2}(A) \xrightarrow{S} H C^{n}(A) \xrightarrow{l} H H^{n}(A) \rightarrow \ldots
$$

Where I is induced by the inclusion, $B=Q s(1-\lambda)$, and S is induced by the cup product with the generator $\sigma \in H^{\bullet}(\mathbb{k})$.

Theorems and Examples

Proposition (Connes)

Let τ be an $n+1$ linear functional on A. Then the following are equivalent:

1. There is an n-dimensional cycle $\left(\Omega, d, \int\right)$ and a homomorphism $\rho: A \rightarrow \Omega^{0}$ such that

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int \rho\left(a_{0}\right) d \rho\left(a_{1}\right) \ldots d \rho\left(a_{n}\right)
$$

2. There exists a closed graded trace $\hat{\tau}$ of dimension n on $\Omega^{*}(A)$ such that

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\hat{\tau}\left(a_{0} d a_{1} \ldots d a_{n}\right)
$$

3. $b \tau=0$ and $(1-\lambda) \tau=0$. That is $\tau \in Z_{\lambda}^{n}(A)$.

Theorems and Examples

Theorem (Connes)
The map $\tau \mapsto \hat{\tau}$ gives an isomorphism of ${H C^{n}}^{n}(A) / \operatorname{ImB}$ and the quotient space of closed graded traces of degree n on $\Omega^{*}(A)$ by those of the form $d \mu$, where μ is a graded trace of degree $n+1$ on $\Omega^{*}(A)$.

Theorems and Examples

Theorem (Connes)

Let V be a smooth compact manifold and $A=C^{\infty}(V)$ the topological space of smooth functions on V. Then
a. The map $\varphi \mapsto C_{\varphi}$ is a canonical isomorphism between the continuous Hochschild cohomology $H H(A)$ with the space \mathcal{D}_{k} of k-dimensional de Rham Currents on V.

$$
\left\langle C_{\varphi}, f_{0} d f_{1} \wedge \ldots \wedge d f_{n}\right\rangle=\frac{1}{k!} \sum_{\sigma \in S_{k}} \varepsilon(\sigma) \varphi\left(f_{0}, \ldots, f_{n}\right)
$$

b. Under the isomorphism C, the operator $I \circ B: H H^{k}(A) \rightarrow H H^{k-1}(A)$ is the de Rham boundary, d, for currents.

Theorems and Examples

From Connes, there exist pairings $\left\langle K_{0}(A), H C^{e}(A)\right\rangle$ and $\left\langle K_{1}(A), H C^{\circ}(A)\right\rangle$ between the first and second K-theory groups of A and the even and odd cyclic cohomological groups of A.

An open question is then, how can we apply these results to manifolds with boundary?

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):
$\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots, a_{n}\right) & =\int a_{0} d a_{1} \ldots d a_{n} \\
& =(-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1}
\end{aligned}
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\left.\left.\begin{array}{rl}
\tau\left(a_{0}, \ldots,\right. & \left.a_{n}\right)
\end{array}\right)=\int a_{0} d a_{1} \ldots d a_{n}\right)
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition $1) \Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots,\right. & \left.a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n} \\
= & (-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1} \\
= & (-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+(-1)^{n} \int a_{n} d a_{0} d a_{1} \ldots d a_{n-1} \\
= & (-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+\lambda \tau\left(a_{0}, \ldots, a_{n}\right)
\end{aligned}
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots,\right. & \left.a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n} \\
& =(-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1} \\
= & (-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+(-1)^{n} \int a_{n} d a_{0} d a_{1} \ldots d a_{n-1} \\
& =(-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+\lambda \tau\left(a_{0}, \ldots, a_{n}\right)
\end{aligned}
$$

Hence

$$
(1-\lambda) \tau\left(a_{0}, \ldots, a_{n}\right)=(-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1} \sim \int_{\partial M} \alpha
$$

Theorems and Examples

For example, given a manifold M of dimension n, and $\omega \in \Omega^{n-k}(M)$ a closed $(n-k)$-form, then $\varphi_{\omega} \in C^{\infty}(M)^{k+1} \rightarrow \mathbb{C}$ given by

$$
\varphi_{\omega}\left(f_{0}, \ldots, f_{k}\right)=\int_{M} f_{0} d f_{1} \wedge \ldots \wedge d f_{k} \wedge \omega
$$

is cyclic when $\partial M=\emptyset$, i.e. $\varphi\left(f_{0}, \ldots, f_{k}\right)=(-1)^{k} \varphi\left(f_{k}, f_{0}, \ldots, f_{k-1}\right)$. This corresponds to the current $C_{\omega} \in \Omega^{k}(M) \rightarrow \mathbb{C}$ being closed

$$
\begin{aligned}
d C_{\omega}(\eta) & =C_{\omega}(d \eta) \\
& =\int_{M} d \eta \wedge \omega \\
& =\int_{M} d(\eta \wedge \omega)-(-1)^{k} \int \eta \wedge d \omega \\
& =\int_{\partial M} \eta \wedge \omega-(-1)^{k} \int \eta \wedge d \omega \\
& =0
\end{aligned}
$$

Theorems and Examples

In other words, a trace that is "closed" and "graded" corresponds to being "cyclic" in cohomology. However, if we have a boundary on our manifold, then by Stokes' theorem we might need to relax the "closed" condition. Instead, we are looking for a complex between the Connes complex $C_{\lambda}^{\bullet}(A)$ and the Hochschild complex $C^{\bullet}(A)$.

For a manifold M with Boundary ∂M, we now have two algebras $A=C^{\infty}(M)$ and $B=C^{\infty}(\partial M)$ (or $\mathscr{E}{ }^{\infty}(\partial M)$) along with a surjection $A \xrightarrow{\sigma} B$ between them, and we are looking for functionals $\varphi \in C^{\bullet}(A)$ such that $(1-\lambda) \varphi \in \sigma^{*} C^{\bullet}(B)$

Bridge Cohomology

Definitions

Definition (Lesch, Moscovici, Pflaum)
(Originally "Restricted Cyclic Cohomology")
Let A and B be unital \mathbb{k}-algebras, and $\sigma: A \rightarrow B$ a surjective unital homomorphism with kernel K. We define the bridge complex of $\sigma, R^{n}(\sigma)$, to be the complex whose $n^{\text {th }}$ module is the set of $\varphi \in C^{n}(A)$ such that $(1-\lambda) \varphi$ descends do B, meaning

$$
(1-\lambda) \varphi=\sigma^{*} \psi \text { for some } \psi \in C_{\mathrm{bar}}^{n}(B)
$$

For any $\varphi \in R^{n}(\sigma)$ we have $(1-\lambda) b \varphi=b^{\prime}(1-\lambda) \varphi=b^{\prime} \sigma^{*} \psi=\sigma^{*} b^{\prime} \psi$ for some $\psi \in C^{n}(B)$. Thus b maps $R^{n}(\sigma)$ to $R^{n+1}(\sigma)$, and $\left(R^{\bullet}(\sigma), b\right)$ is a complex. Its cohomology will be denoted by $\operatorname{HR}^{\bullet}(\sigma)$ and called the bridge cohomology.

Bridge Cohomology

Definitions

Proposition

We have a non-direct sum $R^{\bullet}(\sigma)=C_{\lambda}^{\bullet}(A)+\sigma^{*} C^{\bullet}(B)$.
Proof.
Given any $\varphi \in R^{n}(\sigma)$, let $\psi \in C_{\text {bar }}^{n}(B)$ be such that $(1-\lambda) \varphi=\sigma^{*} \psi$. Notice that $Q \sigma^{*} \psi=Q(1-\lambda) \varphi=0$ we have $\sigma^{*} Q \psi=0$, and hence $Q \psi=0$ since σ^{*} is injective. Thus, there exists $\psi^{\prime} \in C^{n}(B)$ such that $(1-\lambda) \psi^{\prime}=\psi$. Now we write $\varphi=\left(\varphi-\sigma^{*} \psi^{\prime}\right)+\sigma^{*} \psi^{\prime}$.

Bridge Cohomology

Categorical Constructions

We define the category $\mathcal{S}_{\mathbb{1}, \mathrm{k}}$ to have objects as surjective unital \mathbb{k}_{k}-algebra homomorphisms. Given two objects $\sigma, \tau \in \operatorname{Obj}\left(\mathcal{S}_{\mathbb{1}, \mathbb{k}}\right)$, a morphism from σ to τ is a pair of unital algebra homomorphisms (f_{1}, f_{2}) such that $\tau f_{1}=f_{2} \sigma$ i.e. we have a commutative diagram:

Note that this is a monoidal category where the unit is $\operatorname{id}_{\mathfrak{k}}: \mathbb{k} \rightarrow \mathbb{k}$, which for any $\sigma: A \rightarrow B$, we get the canonical inclusion $\operatorname{id}_{\mathfrak{k}} \xrightarrow{\left(\iota_{A}, \iota_{B}\right)} \sigma$.

Bridge Cohomology

Categorical Constructions

We can now define the bridge complex as a (contravariant) functor $R^{\bullet}(\cdot): \mathcal{S}_{\mathbb{1}, \mathfrak{k}} \rightarrow \mathcal{C}$, from the category of surjective unital algebra homomorphisms to the category of chain complexes.

Of special note:

$$
\begin{aligned}
R^{\bullet}\left(\mathrm{id}_{A}\right) & =\left\{\varphi \in C^{\bullet}(A) \mid(1-\lambda) \varphi=\mathrm{id}_{\mathcal{A}}^{*} \psi \text { for some } \psi \in C^{\bullet}(A)\right\} \\
& =C^{\bullet}(A)
\end{aligned}
$$

And for the zero map we have the short exact sequence $A \rightarrow A \xrightarrow{0_{A}} 0$, and bridge cohomology

$$
R^{\bullet}\left(0_{A}\right)=\left\{\varphi \in C^{\bullet}(A) \mid(1-\lambda) \varphi=0\right\}=C_{\lambda}^{\bullet}(A)
$$

Bridge Cohomology

Categorical Constructions

So for any map σ with domain A, we have
$C_{\lambda}^{\bullet}(A) \subset R^{\bullet}(\sigma) \subset C^{\bullet}(A)$, and the degree to how close $R^{\bullet}(\sigma)$ sits between either two is measured in some sense by the size of the kernel of σ.

Definition

Given any \mathbb{k}-algebras A and B (not necessarily unital) and a surjective algebra homomorphism $\sigma: A \rightarrow B$, let $\sigma_{+}: A_{+} \rightarrow B_{+}$ be the extension of σ to the augmented algebras A_{+}and B_{+}. We define the $n^{\text {th }}$ bridge cohomology module of σ as:

$$
H R^{n}(\sigma):=\operatorname{ker}\left(H R^{n}\left(\sigma_{+}\right) \xrightarrow{\iota^{*}} H R^{n}\left(\operatorname{id}_{\mathfrak{k}}\right)\right) .
$$

Bridge Cohomology

Normalized and Reduced Complexes

Definition

For a surjective map of unital algebras $A \xrightarrow{\sigma} B$, the bridge complex $R(\sigma)$ can be defined as the pullback in the following diagram:

Bridge Cohomology

Normalized and Reduced Complexes

In the category of cochain complexes, this means that

$$
R^{n}(\sigma)=\left\{\left.\binom{\varphi}{\psi} \in C^{n}(A) \times C_{\text {bar }}^{n}(B) \right\rvert\,(1-\lambda) \varphi=\sigma^{*} \psi\right\}
$$

with differential $\left(\begin{array}{cc}b & 0 \\ 0 & b^{\prime}\end{array}\right)$, though since the map σ^{*} is injective, including the bottom entry ψ isn't quite necessary, so we will often only write elements as $\varphi \in R^{n}(\sigma)$.

Bridge Cohomology

Normalized and Reduced Complexes

Definition

We may define the reduced bridge complex $R(\sigma)_{\text {red }}$ as either of the following kernels:

$$
\begin{aligned}
0 \rightarrow R(\sigma)_{\mathrm{red}} \rightarrow & R(\sigma) \rightarrow D(\sigma)_{\mathrm{red}} \rightarrow 0 \\
& \text { or } \\
0 \rightarrow R(\sigma)_{\mathrm{red}} \rightarrow & \bar{R}(\sigma) \rightarrow \AA_{A}[0] \rightarrow 0
\end{aligned}
$$

It's cohomology will be denoted $\overline{H R}^{n}(\sigma)=H^{n}\left(R(\sigma)_{\text {red }}\right)$. We a long exact sequence:
$0 \rightarrow \overline{H R}^{0}(\sigma) \rightarrow H R^{0}(\sigma) \rightarrow \AA_{A} \rightarrow \overline{H R}^{1}(\sigma) \rightarrow H R^{1}(\sigma) \rightarrow 0 \rightarrow \ldots$
$\rightarrow \overline{H R}^{2 n}(\sigma) \rightarrow H R^{2 n}(\sigma) \rightarrow \AA_{A} / \AA_{B} \rightarrow \overline{H R}^{2 n+1}(\sigma) \rightarrow H R^{2 n+1}(\sigma) \rightarrow 0 \rightarrow$

Bridge Cohomology

Normalized and Reduced Complexes

Proposition

$R(\sigma)_{\text {red }}$ is the pullback of the corresponding normalized complexes:

Proof.

Bridge Cohomology

Non-unital Algebras

Theorem
For a non-unital surjection $\sigma: A \rightarrow B, H R^{n}(\sigma)=H^{n}\left(R\left(\sigma_{+}\right)_{\mathrm{red}}\right)$.
Proof.
It should be clear that ${ }_{j} A_{+}={ }_{j} B_{+}=\mathbb{k}$, and $R\left(\mathrm{id}_{\mathfrak{k}}\right)=C(\mathbb{k})$. Hence $H R^{n}\left(\mathrm{id}_{\mathfrak{k}}\right)=H H^{n}(\mathbb{k})=\left\{\begin{array}{ll}0 & n>0 \\ \mathfrak{k} & n=0\end{array}\right.$. The previous long exact
sequence then becomes

$$
0 \rightarrow \overline{H R}^{0}\left(\sigma_{+}\right) \rightarrow H R^{0}\left(\sigma_{+}\right) \rightarrow \mathbb{k} \rightarrow \overline{H R}^{1}\left(\sigma_{+}\right) \rightarrow H R^{1}\left(\sigma_{+}\right) \rightarrow 0 \rightarrow \ldots
$$

Note that in degree $0, R^{0}\left(\sigma_{+}\right)=\left(A_{+}\right)^{*}$ and that the map $H R^{0}\left(\sigma_{+}\right) \rightarrow \mathbb{k}$ is induced by the evaluation map ev $1:\left(A_{+}\right)^{*} \rightarrow \mathbb{k}$ which is surjective, since the projection $\pi: A_{+} \rightarrow \mathbb{k}$ is such that $b \pi=0$. Thus the result follows.

Bridge Cohomology

Non-unital Algebras

Definition

The bicomplex $R B(\sigma)^{\{2\}}$ associated to $R\left(\sigma_{+}\right)_{\text {red }}$ is given by the pullback

$$
\stackrel{\downarrow}{\square} \underset{C B(B)}{ } C C(A)^{\{2\}} \xrightarrow{\{2\}} \xrightarrow{\sigma^{*} \oplus \sigma^{*}} C B(A)^{\{2\}}
$$

Corollary $H^{n}\left(\operatorname{Tot} R B(\sigma)^{\{2\}}\right)=H R^{n}(\sigma)$.

Bridge Cohomology

Non-unital Algebras

Explicitly, we get the following diagram for $R B(\sigma)^{\{2\}}$

where $(1-\lambda)^{\nabla}=\left(\sigma^{*}\right)^{-1}(1-\lambda)$.

Bridge Cohomology

Cyclic bicomplexes

Let $\sigma: A \rightarrow A / I$ be a surjective unital algebra homomorphism, where $I \subset A$ is an ideal. Then the relative Hochschild complex $C(A, I)$ is defined as the cokernel

$$
0 \rightarrow C(A / I) \rightarrow C(A) \rightarrow C(A, I) \rightarrow 0
$$

It's cohomology will be denoted $H H(A, I)$ called the relative Hochschild homology, and we of course have a long exact sequence relating the three

$$
\ldots \rightarrow H H^{n}(A, I) \rightarrow H H^{n}(A) \rightarrow H H^{n}(A / I) \rightarrow H H^{n+1}(A, I) \rightarrow \ldots
$$

Bridge Cohomology

Cyclic bicomplexes

Definition

Let A be a unital algebra and $0 \rightarrow I \rightarrow A \xrightarrow{\sigma} A / I \rightarrow 0$ be a short exact sequence of algebras. Define the bridge bicomplex of σ, $R R(\sigma)$, as the bicomplex with the following columns

$$
C(A) \xrightarrow{q(1-\lambda)} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} C(A, I) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} \ldots
$$

We will denote the cohomology of the total complex by $H R^{n}(\sigma):=H^{n}(\operatorname{Tot} R R(\sigma))$ and call it the bridge cohomology of σ.

Bridge Cohomology

Cyclic bicomplexes

Bridge Cohomology

Cyclic bicomplexes

Proposition

When \mathbb{k} contains \mathbb{Q}, the total complex of $R R(\sigma)$ is quasi-isomorphic to the bridge complex, $\operatorname{Tot} R R(\sigma) \stackrel{q}{\cong} R(\sigma)$.

Proposition
For a non-unital surjection $A \xrightarrow{\sigma} B, \overline{H R}\left(\sigma_{+}\right)=H R(\sigma)$.

Lemma

For an augmented morphism $\sigma_{+}: A_{+} \rightarrow A_{+} / I$, $H R^{n}(\sigma)=H^{n}(\operatorname{Tot} R R B(\sigma))$, where $R R B(\sigma)$ is the following tricomplex

Bridge Cohomology

Cyclic bicomplexes

Definition

For any algebra surjection $\sigma: A \rightarrow B$, the bar bicomplex of σ, $R R_{\mathrm{bar}}(\sigma)$, is the back sheet of $\operatorname{RRB}(\sigma)$. That is, $R R_{\mathrm{bar}}(\sigma)$ is the bicomplex with columns
$R R_{\mathrm{bar}}(\sigma):=C_{\mathrm{bar}}(A) \xrightarrow{q} C_{\mathrm{bar}}(A, I) \xrightarrow{0} C_{\mathrm{bar}}(A, I) \xrightarrow{1} C_{\mathrm{bar}}(A, I) \xrightarrow{0} \ldots$
The bar cohomology of $\sigma, H B^{n}(\sigma)$, is given as the total cohomology of this complex. $H B^{n}(\sigma):=H^{n}\left(\operatorname{Tot} R R_{\mathrm{bar}}(\sigma)\right)$.

Definition
An algebra surjection $\sigma: A \rightarrow B$ is said to be $c o H$-unital when $H B^{n}(\sigma)=0$ for all n.

Bridge Cohomology

Future Projects and Applications

Given an exact sequence in $\mathcal{S}_{\mathfrak{k}}$,

$$
0 \rightarrow \sigma \xrightarrow{\left(f_{1}, f_{2}\right)} \tau \xrightarrow{\left(g_{1}, g_{2}\right)} \tau / \sigma \rightarrow 0
$$

we can define the relative bridge cocomplex, $R^{\bullet}(\tau, \sigma)$, as the cokernel

Bridge Cohomology

Future Projects and Applications

Theorem (Excision (conjectured))
Given an exact sequence in $\mathcal{S}_{\mathfrak{k}}$,

$$
0 \rightarrow \sigma \xrightarrow{\left(f_{1}, f_{2}\right)} \tau \xrightarrow{\left(g_{1}, g_{2}\right)} \tau / \sigma \rightarrow 0
$$

with τ and τ / σ unital, then the map $R^{\bullet}(\tau, \sigma) \rightarrow R^{\bullet}(\sigma)$ is a quasi-isomorphism if and only if σ is coH -unital.

Research Goal

Generalize the Gysin-Connes sequence to bridge cohomology

$$
\ldots \xrightarrow{\prime} H H^{n-1}(A) \xrightarrow{B} H C^{n-2}(A) \xrightarrow{S} H C^{n}(A) \xrightarrow{l} H H^{n}(A) \rightarrow \ldots
$$

Bridge Cohomology

Future Projects and Applications

Research Goal

Correlate bridge cohomology and de Rham Homology on manifolds with boundary: (L.,M.,P.) for M compact and $C^{\infty}(M) \xrightarrow{\sigma} \mathscr{E}^{\infty}(\partial M)$,
$H R(\sigma) \cong B^{-1}\left(\mathscr{D}_{k-1}^{\prime}(M ; \partial M)\right) \oplus H_{k-2}^{d R}(M ; \partial M) \oplus H_{k-4}^{d R}(M ; \partial M) \oplus \ldots$

Extend the pairings $\left\langle K_{0}(A), H C^{e}(A)\right\rangle$ and $\left\langle K_{1}(A), H C^{\circ}(A)\right\rangle$ from Connes, to manifolds with boundaries.

Bridge Cohomology

Future Projects and Applications

Research Goal (Exterior Differential Systems)

Given a system of PDE's, $F^{k}\left(x, y, \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\right)=0$, we can reformulate the problem of looking for solutions to this system in terms of looking for integral submanifolds $N \xrightarrow{i} M$, such that $i^{*} \mathcal{I}=0$, where M is some suitably chosen jet space, and \mathcal{I} is a differential ideal

$$
0 \rightarrow \mathcal{I} \rightarrow \Omega(M) \rightarrow \Omega(M) / \mathcal{I} \rightarrow 0
$$

that corresponds with the original system of PDE's.
Using the techniques developed, we now have a cohomology theory to apply to this situation. The question is, what type of information (if any) in terms of integrability can determined by it's cohomology groups?

Thank You!

