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Preliminaries
Complexes

For any k-algebra A and any A-bimodule M we have the
Hochschild and Bar cochain complexes C •(A,M) and C •bar(A,M),
given by

C •(A,M) := M
b−→ Hom(A,M)

b−→ ...

b−→Hom(A⊗n,M)
b−→ Hom(A⊗n+1,M)

b−→ ...

bϕ(a1, ..., an+1) = a1ϕ(a2, ..., an+1)

+
n∑

i=1

(−1)iϕ(a1, ..., aiai+1, ..., an+1)

+ (−1)n+1ϕ(a1, ..., an)an+1
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For any k-algebra A and any A-bimodule M we have the
Hochschild and Bar cochain complexes C •(A,M) and C •bar(A,M),
given by

C •bar(A,M) := M
b′−→ Hom(A,M)

b′−→ ...

b′−→Hom(A⊗n,M)
b′−→ Hom(A⊗n+1,M)

b′−→

b′ϕ(a1, ..., an+1) = a1ϕ(a2, ..., an+1)

+
n∑

i=1

(−1)iϕ(a1, ..., aiai+1, ..., an+1)



Preliminaries
Maps

Acting on the modules Cn
(bar)(A) we have the cyclic operator

λ : Cn
(bar)(A)→ Cn

(bar)(A)

λϕ(a0, ..., an) = (−1)nϕ(an, a0, ..., an−1)

From this we can also create the norm operator

Q : Cn
(bar)(A)→ Cn

(bar)(A)

Q =
n∑

i=0

λi



Preliminaries
Maps

These operators have the following relationships with the
differentials b and b′:

(1− λ)b = b′(1− λ) Qb′ = bQ

Thus we get chain maps

(1− λ) : C •(A)→ C •bar(A)

Q : C •bar(A)→ C •(A)

When k contains Q the sequence is exact

...
Q−→ C (A)

1−λ−−→ Cbar(A)
Q−→ C (A)

1−λ−−→ Cbar(A)
Q−→ ...



Preliminaries
Cohomologies

When A is a unital algebra, the Hochschild cohomology of A
valued in M is defined as the cohomology of the complex C •(A,M)

HH•(A,M) := H•(C (A,M))

HH•(A) := H•(C (A,A∗))

For any algebra A (not necessarily unital) the bar cohomology of A
(with coefficients in M) is the cohomology of the complex C •bar(A)
(or C •bar(A,M))

HB•(A,M) := H•(Cbar(A,M))

HB•(A) := H•(Cbar(A,A
∗))



Preliminaries
Cohomologies

When A is non-unital, we extend the functor HH• by defining

HH•(A) = ker(HH•(A+)→ HH•(k))

where A+ is the algebra obtained by adjoining a unit to A.



Preliminaries
Normalized and Reduced Complexes

Definition
For a unital algebra A, the normalized Hochschild complex is given
by

C
n
(A) := {ϕ ∈ Cn(A) |ϕ(a0, ..., an) = 0 if some ai ∈ k, 1 ≤ i ≤ n}

0→ C
•
(A)→ C •(A)→ D•(A)→ 0

where the degenerate complex Dn(A) is the set of functionals

Dn(A) := {ϕ |ϕ(a0, ..., an) ai = 1, for some 1 ≤ i ≤ n}

that extend to Cn(A).



Preliminaries
Normalized and Reduced Complexes

Define jA as the following cokernel

0 A
∗

A∗ jA 0

determined by the image of the evaluation map ev1 : A∗ → k,
where ϕ 7→ ϕ(1).

Definition
The Reduced Hochschild cochain complex for a unital algebra A is
defined as the kernel

0→ C •(A)red → C
•
(A)→ jA[0]→ 0.

where jA[0] is the cocomplex with jA in degree 0.



Preliminaries
Normalized and Reduced Complexes

The reduced Hochschild cohomology is then

HH
•
(A) := H•(C •(A)red)

Corollary

For a non-unital algebra A, HHn(A) = Hn(C (A+)red).



Cyclic Cohomology
Connes Complex

Definition
The Connes complex Cλ(A) is given as the kernel of 1− λ :

0→ Cλ(A)→ C (A)
1−λ−−→ Cbar(A)

The “Cyclic” Cohomology of A is then H•λ(A) := H•(Cλ(A))).



Cyclic Cohomology
Cyclic Bicomplex

Definition
For any algebra A the cyclic cobicomplex CC ••(A) is the bicomplex

C 0(A) C 0
bar(A) C 0(A) C 0

bar(A)

C 1(A) C 1
bar(A) C 1(A) C 1

bar(A)

C 2(A) C 2
bar(A) C 2(A) C 2

bar(A)

1− λ

b

1− λ

b

1− λ
b

Q

−b′

Q

−b′

Q

−b′

1− λ

b

1− λ

b

1− λ
b

Q

−b′

Q

−b′

Q

−b′

The nth cyclic cohomology of A is then

HCn(A) := Hn(TotCC ••(A))



Cyclic Cohomology
Cyclic Bicomplex

Proposition

Let C•• → C ′•• be a map of bicomplexes which is a
quasi-isomorphism when restricted to each column. Then the
induced map on the total complexes is a quasi-isomorphism.

Thus, when k contains Q we have H•λ(A) ∼= HC •(A).



Cyclic Cohomology
Gysin-Connes Sequence

The long exact sequence relating cyclic cohomology with
Hochschild cohomology is given by the Gysin-Connes sequence:

...
I−→ HHn−1(A)

B−→ HCn−2(A)
S−→ HCn(A)

I−→ HHn(A)→ ...

Where I is induced by the inclusion, B = Qs(1− λ), and S is
induced by the cup product with the generator σ ∈ H•(k).



Theorems and Examples

Proposition (Connes)

Let τ be an n + 1 linear functional on A. Then the following are
equivalent:

1. There is an n-dimensional cycle (Ω, d ,
∫

) and a
homomorphism ρ : A→ Ω0 such that

τ(a0, ..., an) =

∫
ρ(a0)dρ(a1)...dρ(an)

2. There exists a closed graded trace τ̂ of dimension n on Ω∗(A)
such that

τ(a0, ..., an) = τ̂(a0da1...dan)

3. bτ = 0 and (1− λ)τ = 0. That is τ ∈ Zn
λ (A).



Theorems and Examples

Theorem (Connes)

The map τ 7→ τ̂ gives an isomorphism of HCn(A)/ImB and the
quotient space of closed graded traces of degree n on Ω∗(A) by
those of the form dµ, where µ is a graded trace of degree n + 1 on
Ω∗(A).



Theorems and Examples

Theorem (Connes)

Let V be a smooth compact manifold and A = C∞(V ) the
topological space of smooth functions on V . Then

a. The map ϕ 7→ Cϕ is a canonical isomorphism between the
continuous Hochschild cohomology HH(A) with the space Dk

of k-dimensional de Rham Currents on V .

〈Cϕ, f0df1 ∧ ... ∧ dfn〉 =
1

k!

∑
σ∈Sk

ε(σ)ϕ(f0, ..., fn)

b. Under the isomorphism C, the operator
I ◦ B : HHk(A)→ HHk−1(A) is the de Rham boundary, d, for
currents.



Theorems and Examples

From Connes, there exist pairings 〈K0(A),HC e(A)〉 and
〈K1(A),HC o(A)〉 between the first and second K -theory groups of
A and the even and odd cyclic cohomological groups of A.

An open question is then, how can we apply these results to
manifolds with boundary?



Theorems and Examples

Specifically, if we look at the proof of the previous proposition
1) =⇒ 3):

τ(a0, ..., an) =

∫
a0da1...dan

= (−1)n−1
∫

dana0da1...dan−1

= (−1)n−1
∫

d(ana0)da1...dan−1 + (−1)n
∫

anda0da1...dan−1

= (−1)n−1
∫

d(ana0)da1...dan−1 + λτ(a0, ..., an)

Hence

(1− λ)τ(a0, ..., an) = (−1)n−1
∫

d(ana0)da1...dan−1 ∼
∫
∂M

α
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Theorems and Examples
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∫
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Theorems and Examples
For example, given a manifold M of dimension n, and
ω ∈ Ωn−k(M) a closed (n − k)-form, then ϕω ∈ C∞(M)k+1 → C
given by

ϕω(f0, ..., fk) =

∫
M
f0df1 ∧ ... ∧ dfk ∧ ω

is cyclic when ∂M = ∅, i.e. ϕ(f0, ..., fk) = (−1)kϕ(fk , f0, ..., fk−1).
This corresponds to the current Cω ∈ Ωk(M)→ C being closed

dCω(η) = Cω(dη)

=

∫
M
dη ∧ ω

=

∫
M
d(η ∧ ω)− (−1)k

∫
η ∧ dω

=

∫
∂M

η ∧ ω − (−1)k
∫
η ∧ dω

= 0



Theorems and Examples

In other words, a trace that is “closed” and “graded” corresponds
to being “cyclic” in cohomology. However, if we have a boundary
on our manifold, then by Stokes’ theorem we might need to relax
the “closed” condition. Instead, we are looking for a complex
between the Connes complex C •λ(A) and the Hochschild complex
C •(A).

For a manifold M with Boundary ∂M, we now have two algebras
A = C∞(M) and B = C∞(∂M) (or E∞(∂M)) along with a
surjection A

σ−→ B between them, and we are looking for
functionals ϕ ∈ C •(A) such that (1− λ)ϕ ∈ σ∗C •(B)



Bridge Cohomology
Definitions

Definition (Lesch, Moscovici, Pflaum)

(Originally “Restricted Cyclic Cohomology”)
Let A and B be unital k-algebras, and σ : A→ B a surjective
unital homomorphism with kernel K . We define the bridge
complex of σ, Rn(σ), to be the complex whose nth module is the
set of ϕ ∈ Cn(A) such that (1− λ)ϕ descends do B, meaning

(1− λ)ϕ = σ∗ψ for some ψ ∈ Cn
bar(B).

For any ϕ ∈ Rn(σ) we have
(1− λ)bϕ = b′(1− λ)ϕ = b′σ∗ψ = σ∗b′ψ for some ψ ∈ Cn(B).
Thus b maps Rn(σ) to Rn+1(σ), and (R•(σ), b) is a complex. Its
cohomology will be denoted by HR•(σ) and called the bridge
cohomology.



Bridge Cohomology
Definitions

Proposition

We have a non-direct sum R•(σ) = C •λ(A) + σ∗C •(B).

Proof.
Given any ϕ ∈ Rn(σ), let ψ ∈ Cn

bar(B) be such that
(1− λ)ϕ = σ∗ψ. Notice that Qσ∗ψ = Q(1− λ)ϕ = 0 we have
σ∗Qψ = 0, and hence Qψ = 0 since σ∗ is injective. Thus, there
exists ψ′ ∈ Cn(B) such that (1− λ)ψ′ = ψ. Now we write
ϕ = (ϕ− σ∗ψ′) + σ∗ψ′.



Bridge Cohomology
Categorical Constructions

We define the category S1,k to have objects as surjective unital
k-algebra homomorphisms. Given two objects σ, τ ∈ Obj(S1,k), a
morphism from σ to τ is a pair of unital algebra homomorphisms
(f1, f2) such that τ f1 = f2σ i.e. we have a commutative diagram:

A
σ //

f1
��

B

f2
��

X
τ // Y

Note that this is a monoidal category where the unit is
idk : k→ k, which for any σ : A→ B, we get the canonical

inclusion idk
(ιA,ιB)−−−−→ σ.



Bridge Cohomology
Categorical Constructions

We can now define the bridge complex as a (contravariant) functor
R•(·) : S1,k → C, from the category of surjective unital algebra
homomorphisms to the category of chain complexes.

Of special note:

R•(idA) = {ϕ ∈ C •(A) | (1− λ)ϕ = id∗Aψ for some ψ ∈ C •(A)}
= C •(A)

And for the zero map we have the short exact sequence

A→ A
0A−→ 0, and bridge cohomology

R•(0A) = {ϕ ∈ C •(A) | (1− λ)ϕ = 0} = C •λ(A).



Bridge Cohomology
Categorical Constructions

So for any map σ with domain A, we have
C •λ(A) ⊂ R•(σ) ⊂ C •(A), and the degree to how close R•(σ) sits
between either two is measured in some sense by the size of the
kernel of σ.

Definition
Given any k-algebras A and B (not necessarily unital) and a
surjective algebra homomorphism σ : A→ B, let σ+ : A+ → B+

be the extension of σ to the augmented algebras A+ and B+. We
define the nth bridge cohomology module of σ as:

HRn(σ) := ker
(
HRn(σ+)

ι∗−→ HRn(idk)
)
.



Bridge Cohomology
Normalized and Reduced Complexes

Definition
For a surjective map of unital algebras A

σ−→ B, the bridge complex
R(σ) can be defined as the pullback in the following diagram:

C •bar(B) C •bar(A)

R•(σ) C •(A)

σ∗

1− λ



Bridge Cohomology
Normalized and Reduced Complexes

In the category of cochain complexes, this means that

Rn(σ) =

{(
ϕ
ψ

)
∈ Cn(A)× Cn

bar(B)
∣∣∣ (1− λ)ϕ = σ∗ψ

}
,

with differential

(
b 0
0 b′

)
, though since the map σ∗ is injective,

including the bottom entry ψ isn’t quite necessary, so we will often
only write elements as ϕ ∈ Rn(σ).



Bridge Cohomology
Normalized and Reduced Complexes

Definition
We may define the reduced bridge complex R(σ)red as either of the
following kernels:

0→ R(σ)red → R(σ)→ D(σ)red → 0

or

0→ R(σ)red → R(σ)→ jA[0]→ 0

It’s cohomology will be denoted HR
n
(σ) = Hn(R(σ)red). We a

long exact sequence:

0→ HR
0
(σ)→ HR0(σ)→ jA → HR

1
(σ)→ HR1(σ)→ 0→ ...

→ HR
2n

(σ)→ HR2n(σ)→ jA/jB → HR
2n+1

(σ)→ HR2n+1(σ)→ 0→



Bridge Cohomology
Normalized and Reduced Complexes

Proposition

R(σ)red is the pullback of the corresponding normalized complexes:

C •bar(B)red C •bar(A)red

R•(σ)red C •(A)red

σ∗

1− λ

Proof.

C •bar(B) C •bar(A)

R•(σ) C •(A)

σ∗

1− λ

D•bar(B) D•bar(A)red

D•(σ) D•(A)

σ∗

1− λ

C •bar(B)red C •bar(A)red

C •(σ)red C •(A)red

σ∗

1− λ



Bridge Cohomology
Non-unital Algebras

Theorem
For a non-unital surjection σ : A→ B, HRn(σ) = Hn(R(σ+)red).

Proof.
It should be clear that jA+ = jB+ = k, and R(idk) = C (k). Hence

HRn(idk) = HHn(k) =

{
0 n > 0

k n = 0
. The previous long exact

sequence then becomes

0→ HR
0
(σ+)→ HR0(σ+)→ k→ HR

1
(σ+)→ HR1(σ+)→ 0→ ...

Note that in degree 0, R0(σ+) = (A+)∗ and that the map
HR0(σ+)→ k is induced by the evaluation map ev1 : (A+)∗ → k
which is surjective, since the projection π : A+ → k is such that
bπ = 0. Thus the result follows.



Bridge Cohomology
Non-unital Algebras

Definition
The bicomplex RB(σ){2} associated to R(σ+)red is given by the
pullback

CB(B){2} CB(A){2}

RB(σ){2} CC (A){2}

σ∗ ⊕ σ∗

1− λ⊕ 1

Corollary

Hn(TotRB(σ){2}) = HRn(σ).



Bridge Cohomology
Non-unital Algebras

Explicitly, we get the following diagram for RB(σ){2}

R0(σ) C 0
bar(B)

R1(σ) C 1
bar(B)

R2(σ) C 2
bar(B)

b −b′

(1− λ)O

b −b′

(1− λ)O

b −b′

(1− λ)O

where (1− λ)O = (σ∗)−1(1− λ).



Bridge Cohomology
Cyclic bicomplexes

Let σ : A→ A/I be a surjective unital algebra homomorphism,
where I ⊂ A is an ideal. Then the relative Hochschild complex
C (A, I ) is defined as the cokernel

0→ C (A/I )→ C (A)→ C (A, I )→ 0.

It’s cohomology will be denoted HH(A, I ) called the relative
Hochschild homology, and we of course have a long exact sequence
relating the three

...→ HHn(A, I )→ HHn(A)→ HHn(A/I )→ HHn+1(A, I )→ ...



Bridge Cohomology
Cyclic bicomplexes

Definition
Let A be a unital algebra and 0→ I → A

σ−→ A/I → 0 be a short
exact sequence of algebras. Define the bridge bicomplex of σ,
RR(σ), as the bicomplex with the following columns

C (A)
q(1−λ)−−−−→ Cbar(A, I )

Q−→ C (A, I )
1−λ−−→ Cbar(A, I )

Q−→ ...

We will denote the cohomology of the total complex by
HRn(σ) := Hn(TotRR(σ)) and call it the bridge cohomology of σ.



Bridge Cohomology
Cyclic bicomplexes

C 0(A) C 0
bar(A, I ) C 0(A, I ) C 0

bar(A, I )

C 1(A) C 1
bar(A, I ) C 1(A, I ) C 1

bar(A, I )

C 2(A) C 2
bar(A, I ) C 2(A, I ) C 2

bar(A, I )

b −b′

q(1 − λ) Q 1 − λ



Bridge Cohomology
Cyclic bicomplexes

Proposition

When k contains Q, the total complex of RR(σ) is

quasi-isomorphic to the bridge complex, TotRR(σ)
q∼= R(σ).

Proposition

For a non-unital surjection A
σ−→ B, HR(σ+) = HR(σ).



Lemma
For an augmented morphism σ+ : A+ → A+/I ,
HRn(σ) = Hn(TotRRB(σ)), where RRB(σ) is the following
tricomplex

C 0(A)

C 0
bar(A)

C 0
bar(A, I )

C 0
bar(A, I )

C 0(A, I )

C 0
bar(A, I )

C 0
bar(A, I )

C 0
bar(A, I )

C 1(A)

C 1
bar(A)

C 1
bar(A, I )

C 1
bar(A, I )

C 1(A, I )

C 1
bar(A, I )

C 1
bar(A, I )

C 1
bar(A, I )

C 2(A)

C 2
bar(A)

C 2
bar(A, I )

C 2
bar(A, I )

C 2(A, I )

C 2
bar(A, I )

C 2
bar(A, I )

C 2
bar(A, I )

b −b′

1 − λ

q(1 − λ)



Bridge Cohomology
Cyclic bicomplexes

Definition
For any algebra surjection σ : A→ B, the bar bicomplex of σ,
RRbar(σ), is the back sheet of RRB(σ). That is, RRbar(σ) is the
bicomplex with columns

RRbar(σ) := Cbar(A)
q−→ Cbar(A, I )

0−→ Cbar(A, I )
1−→ Cbar(A, I )

0−→ ...

The bar cohomology of σ, HBn(σ), is given as the total
cohomology of this complex. HBn(σ) := Hn(TotRRbar(σ)).

Definition
An algebra surjection σ : A→ B is said to be coH-unital when
HBn(σ) = 0 for all n.



Bridge Cohomology
Future Projects and Applications

Given an exact sequence in Sk,

0→ σ
(f1,f2)−−−→ τ

(g1,g2)−−−−→ τ/σ → 0

we can define the relative bridge cocomplex, R•(τ, σ), as the
cokernel

R•(σ)

0 // R•(τ/σ) // R•(τ) //

99

R•(τ, σ) //

OO

0



Bridge Cohomology
Future Projects and Applications

Theorem (Excision (conjectured))

Given an exact sequence in Sk,

0→ σ
(f1,f2)−−−→ τ

(g1,g2)−−−−→ τ/σ → 0

with τ and τ/σ unital, then the map R•(τ, σ)→ R•(σ) is a
quasi-isomorphism if and only if σ is coH-unital.

Research Goal
Generalize the Gysin-Connes sequence to bridge cohomology

...
I−→ HHn−1(A)

B−→ HCn−2(A)
S−→ HCn(A)

I−→ HHn(A)→ ...



Bridge Cohomology
Future Projects and Applications

Research Goal
Correlate bridge cohomology and de Rham Homology on manifolds
with boundary: (L.,M.,P.) for M compact and
C∞(M)

σ−→ E∞(∂M),

HR(σ) ∼= B−1(D ′k−1(M; ∂M))⊕HdR
k−2(M; ∂M)⊕HdR

k−4(M; ∂M)⊕...

Extend the pairings 〈K0(A),HC e(A)〉 and 〈K1(A),HC o(A)〉 from
Connes, to manifolds with boundaries.



Bridge Cohomology
Future Projects and Applications

Research Goal (Exterior Differential Systems)

Given a system of PDE’s, F k(x , y , ∂
|α|

∂xα ) = 0, we can reformulate
the problem of looking for solutions to this system in terms of

looking for integral submanifolds N
i−→ M, such that i∗I = 0,

where M is some suitably chosen jet space, and I is a differential
ideal

0→ I → Ω(M)→ Ω(M)/I → 0

that corresponds with the original system of PDE’s.

Using the techniques developed, we now have a cohomology theory
to apply to this situation. The question is, what type of
information (if any) in terms of integrability can determined by it’s
cohomology groups?



Thank You!
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