Jon Belcher

University of Colorado Boulder

K-Theory Conference Argentina 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Complexes

For any k-algebra A and any A-bimodule M we have the Hochschild and Bar cochain complexes $C^{\bullet}(A, M)$ and $C^{\bullet}_{\text{bar}}(A, M)$, given by

$$\begin{split} C^{\bullet}(A,M) &:= M \xrightarrow{b} \operatorname{Hom}(A,M) \xrightarrow{b} \dots \\ & \xrightarrow{b} \operatorname{Hom}(A^{\otimes n},M) \xrightarrow{b} \operatorname{Hom}(A^{\otimes n+1},M) \xrightarrow{b} \dots \end{split}$$

$$egin{aligned} barphi(a_1,...,a_{n+1}) &= a_1arphi(a_2,...,a_{n+1}) \ &+ \sum_{i=1}^n (-1)^i arphi(a_1,...,a_i a_{i+1},...,a_{n+1}) \ &+ (-1)^{n+1} arphi(a_1,...,a_n) a_{n+1} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexes

For any k-algebra A and any A-bimodule M we have the Hochschild and Bar cochain complexes $C^{\bullet}(A, M)$ and $C^{\bullet}_{\text{bar}}(A, M)$, given by

$$\begin{split} C^{ullet}_{\mathrm{bar}}(A,M) &:= M \xrightarrow{b'} \mathrm{Hom}(A,M) \xrightarrow{b'} \dots \ & \xrightarrow{b'} \mathrm{Hom}(A^{\otimes n},M) \xrightarrow{b'} \mathrm{Hom}(A^{\otimes n+1},M) \xrightarrow{b'} \end{split}$$

$$egin{aligned} b'arphi(a_1,...,a_{n+1}) &= a_1arphi(a_2,...,a_{n+1}) \ &+ \sum_{i=1}^n (-1)^i arphi(a_1,...,a_ia_{i+1},...,a_{n+1}) \end{aligned}$$

Maps

Acting on the modules $C_{(bar)}^{n}(A)$ we have the cyclic operator

$$egin{aligned} \lambda: & C^n_{(\mathrm{bar})}(A) o C^n_{(\mathrm{bar})}(A) \ & \lambda arphi(a_0,...,a_n) = (-1)^n arphi(a_n,a_0,...,a_{n-1}) \end{aligned}$$

From this we can also create the norm operator

$$egin{aligned} Q: & C^n_{ ext{(bar)}}(A) o C^n_{ ext{(bar)}}(A) \ & Q = \sum_{i=0}^n \lambda^i \end{aligned}$$

Maps

These operators have the following relationships with the differentials b and b':

$$(1-\lambda)b=b'(1-\lambda)$$
 $Qb'=bQ$

Thus we get chain maps

$$(1-\lambda): C^{ullet}(A) o C^{ullet}_{\mathrm{bar}}(A)$$
 $Q: C^{ullet}_{\mathrm{bar}}(A) o C^{ullet}(A)$

When \Bbbk contains $\mathbb Q$ the sequence is exact

$$... \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} ...$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cohomologies

When A is a unital algebra, the Hochschild cohomology of A valued in M is defined as the cohomology of the complex $C^{\bullet}(A, M)$

$$HH^{\bullet}(A, M) := H^{\bullet}(C(A, M))$$

$$HH^{\bullet}(A) := H^{\bullet}(C(A, A^*))$$

For any algebra A (not necessarily unital) the bar cohomology of A (with coefficients in M) is the cohomology of the complex $C^{\bullet}_{\text{bar}}(A)$ (or $C^{\bullet}_{\text{bar}}(A, M)$)

$$HB^{\bullet}(A, M) := H^{\bullet}(C_{\mathrm{bar}}(A, M))$$
$$HB^{\bullet}(A) := H^{\bullet}(C_{\mathrm{bar}}(A, A^*))$$

Cohomologies

When A is non-unital, we extend the functor HH^{\bullet} by defining

$$HH^{\bullet}(A) = \ker(HH^{\bullet}(A_{+}) \to HH^{\bullet}(\Bbbk))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where A_+ is the algebra obtained by adjoining a unit to A.

Normalized and Reduced Complexes

Definition

For a unital algebra A, the *normalized Hochschild complex* is given by

$$\overline{C}^{n}(A) := \{ \varphi \in C^{n}(A) \mid \varphi(a_{0}, ..., a_{n}) = 0 \text{ if some } a_{i} \in \mathbb{k}, \ 1 \leq i \leq n \}$$
$$0 \to \overline{C}^{\bullet}(A) \to C^{\bullet}(A) \to D^{\bullet}(A) \to 0$$

where the degenerate complex $D^n(A)$ is the set of functionals

$$D^n(A) := \{ \varphi \mid \varphi(a_0, ..., a_n) \mid a_i = 1, \text{ for some } 1 \le i \le n \}$$

that extend to $C^n(A)$.

Normalized and Reduced Complexes

Define j_A as the following cokernel

$$0 \longrightarrow \overline{A}^* \longrightarrow A^* \longrightarrow \mathfrak{j}_A \longrightarrow 0$$

determined by the image of the evaluation map $ev_1: A^* \to \Bbbk$, where $\varphi \mapsto \varphi(1)$.

Definition

The *Reduced Hochschild cochain complex* for a unital algebra A is defined as the kernel

$$0 \to C^{ullet}(A)_{\mathrm{red}} \to \overline{C}^{ullet}(A) \to \mathring{}_{A}[0] \to 0.$$

where $j_A[0]$ is the cocomplex with j_A in degree 0.

Normalized and Reduced Complexes

The reduced Hochschild cohomology is then

$$\overline{HH}^{ullet}(A) := H^{ullet}(C^{ullet}(A)_{\mathrm{red}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

For a non-unital algebra A, $HH^n(A) = H^n(C(A_+)_{red})$.

Cyclic Cohomology

Connes Complex

Definition

The Connes complex $C_{\lambda}(A)$ is given as the kernel of $1 - \lambda$:

$$0 \to C_{\lambda}(A) \to C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A)$$

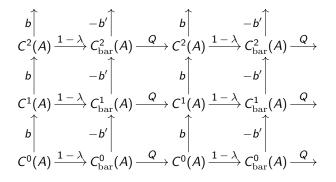
The "Cyclic" Cohomology of A is then $H^{\bullet}_{\lambda}(A) := H^{\bullet}(C_{\lambda}(A))$.

Cyclic Cohomology

Cyclic Bicomplex

Definition

For any algebra A the cyclic cobicomplex $CC^{\bullet\bullet}(A)$ is the bicomplex



The n^{th} cyclic cohomology of A is then

 $HC^{n}(A) := H^{n}(\operatorname{Tot} CC^{\bullet \bullet}(A))$

Cyclic Cohomology

Cyclic Bicomplex

Proposition

Let $C_{\bullet\bullet} \to C'_{\bullet\bullet}$ be a map of bicomplexes which is a quasi-isomorphism when restricted to each column. Then the induced map on the total complexes is a quasi-isomorphism.

Thus, when \Bbbk contains \mathbb{Q} we have $H^{\bullet}_{\lambda}(A) \cong HC^{\bullet}(A)$.

Cyclic Cohomology Gysin-Connes Sequence

The long exact sequence relating cyclic cohomology with Hochschild cohomology is given by the Gysin-Connes sequence:

$$\dots \xrightarrow{I} HH^{n-1}(A) \xrightarrow{B} HC^{n-2}(A) \xrightarrow{S} HC^n(A) \xrightarrow{I} HH^n(A) \to \dots$$

Where I is induced by the inclusion, $B = Qs(1 - \lambda)$, and S is induced by the cup product with the generator $\sigma \in H^{\bullet}(\mathbb{k})$.

Proposition (Connes)

Let τ be an n + 1 linear functional on A. Then the following are equivalent:

1. There is an n-dimensional cycle (Ω, d, \int) and a homomorphism $\rho : A \to \Omega^0$ such that

$$\tau(a_0,...,a_n) = \int \rho(a_0) d\rho(a_1)...d\rho(a_n)$$

 There exists a closed graded trace τ̂ of dimension n on Ω*(A) such that

$$\tau(a_0,...,a_n) = \hat{\tau}(a_0 da_1...da_n)$$

3. $b\tau = 0$ and $(1 - \lambda)\tau = 0$. That is $\tau \in Z_{\lambda}^{n}(A)$.

Theorem (Connes)

The map $\tau \mapsto \hat{\tau}$ gives an isomorphism of $HC^{n}(A)/ImB$ and the quotient space of closed graded traces of degree n on $\Omega^{*}(A)$ by those of the form $d\mu$, where μ is a graded trace of degree n + 1 on $\Omega^{*}(A)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Connes)

Let V be a smooth compact manifold and $A = C^{\infty}(V)$ the topological space of smooth functions on V. Then

a. The map $\varphi \mapsto C_{\varphi}$ is a canonical isomorphism between the continuous Hochschild cohomology HH(A) with the space \mathcal{D}_k of k-dimensional de Rham Currents on V.

$$\langle C_{\varphi}, f_0 df_1 \wedge ... \wedge df_n \rangle = \frac{1}{k!} \sum_{\sigma \in S_k} \varepsilon(\sigma) \varphi(f_0, ..., f_n)$$

b. Under the isomorphism C, the operator $I \circ B : HH^{k}(A) \to HH^{k-1}(A)$ is the de Rham boundary, d, for currents. From Connes, there exist pairings $\langle K_0(A), HC^e(A) \rangle$ and $\langle K_1(A), HC^o(A) \rangle$ between the first and second *K*-theory groups of *A* and the even and odd cyclic cohomological groups of *A*.

An open question is then, how can we apply these results to manifolds with boundary?

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\tau(a_0,...,a_n) = \int a_0 da_1...da_n$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$egin{aligned} & au(a_0,...,a_n) = \int a_0 da_1...da_n \ &= (-1)^{n-1} \int da_n a_0 da_1...da_{n-1} \end{aligned}$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$\begin{aligned} \tau(a_0,...,a_n) &= \int a_0 da_1...da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1...da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1...da_{n-1} + (-1)^n \int a_n da_0 da_1...da_{n-1} \end{aligned}$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$\begin{aligned} \tau(a_0, ..., a_n) &= \int a_0 da_1 ... da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + (-1)^n \int a_n da_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + \lambda \tau(a_0, ..., a_n) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$\begin{aligned} \tau(a_0, ..., a_n) &= \int a_0 da_1 ... da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + (-1)^n \int a_n da_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + \lambda \tau(a_0, ..., a_n) \end{aligned}$$

Hence

$$(1-\lambda)\tau(a_0,...,a_n)=(-1)^{n-1}\int d(a_na_0)da_1...da_{n-1}\sim\int_{\partial M}\alpha$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

d

For example, given a manifold M of dimension n, and $\omega \in \Omega^{n-k}(M)$ a closed (n-k)-form, then $\varphi_{\omega} \in C^{\infty}(M)^{k+1} \to \mathbb{C}$ given by

$$\varphi_{\omega}(f_0,...,f_k) = \int_{\mathcal{M}} f_0 df_1 \wedge ... \wedge df_k \wedge \omega$$

is cyclic when $\partial M = \emptyset$, i.e. $\varphi(f_0, ..., f_k) = (-1)^k \varphi(f_k, f_0, ..., f_{k-1})$. This corresponds to the current $C_\omega \in \Omega^k(M) \to \mathbb{C}$ being closed

$$egin{aligned} \mathcal{C}_{\omega}(\eta) &= \mathcal{C}_{\omega}(d\eta) \ &= \int_{\mathcal{M}} d\eta \wedge \omega \ &= \int_{\mathcal{M}} d(\eta \wedge \omega) - (-1)^k \int \eta \wedge d\omega \ &= \int_{\partial \mathcal{M}} \eta \wedge \omega - (-1)^k \int \eta \wedge d\omega \ &= 0 \end{aligned}$$

In other words, a trace that is "closed" and "graded" corresponds to being "cyclic" in cohomology. However, if we have a boundary on our manifold, then by Stokes' theorem we might need to relax the "closed" condition. Instead, we are looking for a complex between the Connes complex $C^{\bullet}_{\lambda}(A)$ and the Hochschild complex $C^{\bullet}(A)$.

For a manifold M with Boundary ∂M , we now have two algebras $A = C^{\infty}(M)$ and $B = C^{\infty}(\partial M)$ (or $\mathscr{E}^{\infty}(\partial M)$) along with a surjection $A \xrightarrow{\sigma} B$ between them, and we are looking for functionals $\varphi \in C^{\bullet}(A)$ such that $(1 - \lambda)\varphi \in \sigma^*C^{\bullet}(B)$

Definitions

Definition (Lesch, Moscovici, Pflaum)

(Originally "Restricted Cyclic Cohomology") Let A and B be unital k-algebras, and $\sigma : A \to B$ a surjective unital homomorphism with kernel K. We define the bridge complex of σ , $R^n(\sigma)$, to be the complex whose n^{th} module is the set of $\varphi \in C^n(A)$ such that $(1 - \lambda)\varphi$ descends do B, meaning

$$(1-\lambda)\varphi = \sigma^*\psi$$
 for some $\psi \in C^n_{\mathrm{bar}}(B)$.

For any $\varphi \in R^n(\sigma)$ we have $(1-\lambda)b\varphi = b'(1-\lambda)\varphi = b'\sigma^*\psi = \sigma^*b'\psi$ for some $\psi \in C^n(B)$. Thus b maps $R^n(\sigma)$ to $R^{n+1}(\sigma)$, and $(R^{\bullet}(\sigma), b)$ is a complex. Its cohomology will be denoted by $HR^{\bullet}(\sigma)$ and called the *bridge cohomology*.

Definitions

Proposition

We have a non-direct sum $R^{\bullet}(\sigma) = C^{\bullet}_{\lambda}(A) + \sigma^* C^{\bullet}(B)$.

Proof.

Given any $\varphi \in R^n(\sigma)$, let $\psi \in C_{\text{bar}}^n(B)$ be such that $(1-\lambda)\varphi = \sigma^*\psi$. Notice that $Q\sigma^*\psi = Q(1-\lambda)\varphi = 0$ we have $\sigma^*Q\psi = 0$, and hence $Q\psi = 0$ since σ^* is injective. Thus, there exists $\psi' \in C^n(B)$ such that $(1-\lambda)\psi' = \psi$. Now we write $\varphi = (\varphi - \sigma^*\psi') + \sigma^*\psi'$.

Categorical Constructions

We define the category $S_{1,\Bbbk}$ to have objects as surjective unital \Bbbk -algebra homomorphisms. Given two objects $\sigma, \tau \in Obj(S_{1,\Bbbk})$, a morphism from σ to τ is a pair of unital algebra homomorphisms (f_1, f_2) such that $\tau f_1 = f_2 \sigma$ i.e. we have a commutative diagram:

Note that this is a monoidal category where the unit is $id_{\mathbb{k}} : \mathbb{k} \to \mathbb{k}$, which for any $\sigma : A \to B$, we get the canonical inclusion $id_{\mathbb{k}} \xrightarrow{(\iota_A, \iota_B)} \sigma$.

Categorical Constructions

We can now define the bridge complex as a (contravariant) functor $R^{\bullet}(\cdot) : S_{1,\mathbb{k}} \to C$, from the category of surjective unital algebra homomorphisms to the category of chain complexes.

Of special note:

$$\begin{aligned} R^{\bullet}(\mathrm{id}_{\mathcal{A}}) &= \{ \varphi \in C^{\bullet}(\mathcal{A}) \,|\, (1-\lambda)\varphi = \mathrm{id}_{\mathcal{A}}^{*}\psi \text{ for some } \psi \in C^{\bullet}(\mathcal{A}) \} \\ &= C^{\bullet}(\mathcal{A}) \end{aligned}$$

And for the zero map we have the short exact sequence $A \rightarrow A \xrightarrow{0_A} 0$, and bridge cohomology

$$R^{ullet}(0_A) = \{ arphi \in C^{ullet}(A) \, | \, (1-\lambda)arphi = 0 \} = C^{ullet}_\lambda(A).$$

Categorical Constructions

So for any map σ with domain A, we have $C^{\bullet}_{\lambda}(A) \subset R^{\bullet}(\sigma) \subset C^{\bullet}(A)$, and the degree to how close $R^{\bullet}(\sigma)$ sits between either two is measured in some sense by the size of the kernel of σ .

Definition

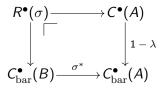
Given any k-algebras A and B (not necessarily unital) and a surjective algebra homomorphism $\sigma: A \to B$, let $\sigma_+: A_+ \to B_+$ be the extension of σ to the augmented algebras A_+ and B_+ . We define the n^{th} bridge cohomology module of σ as:

$$HR^{n}(\sigma) := \ker \left(HR^{n}(\sigma_{+}) \xrightarrow{\iota^{*}} HR^{n}(\mathrm{id}_{\Bbbk}) \right).$$

Normalized and Reduced Complexes

Definition

For a surjective map of unital algebras $A \xrightarrow{\sigma} B$, the bridge complex $R(\sigma)$ can be defined as the pullback in the following diagram:



Bridge Cohomology Normalized and Reduced Complexes

In the category of cochain complexes, this means that

$$R^n(\sigma) = \left\{ \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \in C^n(A) imes C^n_{\mathrm{bar}}(B) \, \Big| \, (1-\lambda) \varphi = \sigma^* \psi
ight\},$$

with differential $\begin{pmatrix} b & 0 \\ 0 & b' \end{pmatrix}$, though since the map σ^* is injective, including the bottom entry ψ isn't quite necessary, so we will often only write elements as $\varphi \in R^n(\sigma)$.

(日) (同) (三) (三) (三) (○) (○)

Normalized and Reduced Complexes

Definition

We may define the *reduced bridge complex* $R(\sigma)_{red}$ as either of the following kernels:

$$egin{aligned} 0 o R(\sigma)_{ ext{red}} o R(\sigma) o D(\sigma)_{ ext{red}} o 0 \ or \ 0 o R(\sigma)_{ ext{red}} o \overline{R}(\sigma) o ec{g}_{A}[0] o 0 \ \hline \sigma r \end{aligned}$$

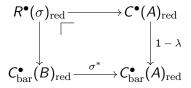
It's cohomology will be denoted $\overline{HR}^n(\sigma) = H^n(R(\sigma)_{red})$. We a long exact sequence:

$$0 \to \overline{HR}^{0}(\sigma) \to HR^{0}(\sigma) \to \mathbb{j}_{A} \to \overline{HR}^{1}(\sigma) \to HR^{1}(\sigma) \to 0 \to \dots$$
$$\to \overline{HR}^{2n}(\sigma) \to HR^{2n}(\sigma) \to \mathbb{j}_{A}/\mathbb{j}_{B} \to \overline{HR}^{2n+1}(\sigma) \to HR^{2n+1}(\sigma) \to 0 \to$$

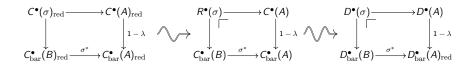
Normalized and Reduced Complexes

Proposition

 $R(\sigma)_{red}$ is the pullback of the corresponding normalized complexes:



Proof.



Non-unital Algebras

Theorem

For a non-unital surjection $\sigma : A \to B$, $HR^n(\sigma) = H^n(R(\sigma_+)_{red})$.

Proof.

It should be clear that
$$j_{A_+} = j_{B_+} = k$$
, and $R(id_k) = C(k)$. Hence
 $HR^n(id_k) = HH^n(k) = \begin{cases} 0 & n > 0 \\ k & n = 0 \end{cases}$. The previous long exact

sequence then becomes

$$0 \to \overline{HR}^0(\sigma_+) \to HR^0(\sigma_+) \to \Bbbk \to \overline{HR}^1(\sigma_+) \to HR^1(\sigma_+) \to 0 \to \dots$$

Note that in degree 0, $R^0(\sigma_+) = (A_+)^*$ and that the map $HR^0(\sigma_+) \to \Bbbk$ is induced by the evaluation map $ev_1 : (A_+)^* \to \Bbbk$ which is surjective, since the projection $\pi : A_+ \to \Bbbk$ is such that $b\pi = 0$. Thus the result follows.

- 日本 - 1 日本 - 日本 - 日本

Non-unital Algebras

Definition

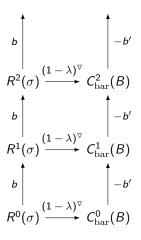
The bicomplex $RB(\sigma)^{\{2\}}$ associated to $R(\sigma_+)_{\rm red}$ is given by the pullback

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary $H^{n}(\operatorname{Tot} RB(\sigma)^{\{2\}}) = HR^{n}(\sigma).$

Non-unital Algebras

Explicitly, we get the following diagram for $RB(\sigma)^{\{2\}}$



・ロット (日) (日) (日) (日) (日)

where
$$(1 - \lambda)^{\bigtriangledown} = (\sigma^*)^{-1}(1 - \lambda)$$
.

Cyclic bicomplexes

Let $\sigma : A \to A/I$ be a surjective unital algebra homomorphism, where $I \subset A$ is an ideal. Then the relative Hochschild complex C(A, I) is defined as the cokernel

$$0 \to C(A/I) \to C(A) \to C(A, I) \to 0.$$

It's cohomology will be denoted HH(A, I) called the relative Hochschild homology, and we of course have a long exact sequence relating the three

$$\dots \rightarrow HH^{n}(A, I) \rightarrow HH^{n}(A) \rightarrow HH^{n}(A/I) \rightarrow HH^{n+1}(A, I) \rightarrow \dots$$

Cyclic bicomplexes

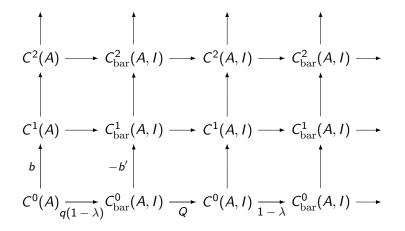
Definition

Let A be a unital algebra and $0 \rightarrow I \rightarrow A \xrightarrow{\sigma} A/I \rightarrow 0$ be a short exact sequence of algebras. Define the *bridge bicomplex of* σ , $RR(\sigma)$, as the bicomplex with the following columns

$$C(A) \xrightarrow{q(1-\lambda)} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} C(A, I) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} \dots$$

We will denote the cohomology of the total complex by $HR^n(\sigma) := H^n(\text{Tot } RR(\sigma))$ and call it the *bridge cohomology of* σ .

Cyclic bicomplexes



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Bridge Cohomology Cyclic bicomplexes

Proposition

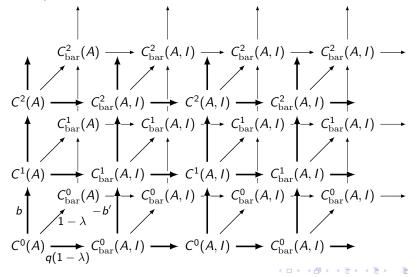
When \Bbbk contains \mathbb{Q} , the total complex of $RR(\sigma)$ is quasi-isomorphic to the bridge complex, $\operatorname{Tot} RR(\sigma) \stackrel{q}{\cong} R(\sigma)$.

Proposition

For a non-unital surjection $A \xrightarrow{\sigma} B$, $\overline{HR}(\sigma_+) = HR(\sigma)$.

Lemma

For an augmented morphism $\sigma_+ : A_+ \to A_+/I$, $HR^n(\sigma) = H^n(\text{Tot } RRB(\sigma))$, where $RRB(\sigma)$ is the following tricomplex



Cyclic bicomplexes

Definition

For any algebra surjection $\sigma : A \to B$, the *bar bicomplex of* σ , $RR_{bar}(\sigma)$, is the back sheet of $RRB(\sigma)$. That is, $RR_{bar}(\sigma)$ is the bicomplex with columns

$$RR_{\mathrm{bar}}(\sigma) := C_{\mathrm{bar}}(A) \xrightarrow{q} C_{\mathrm{bar}}(A, I) \xrightarrow{0} C_{\mathrm{bar}}(A, I) \xrightarrow{1} C_{\mathrm{bar}}(A, I) \xrightarrow{0} \dots$$

The bar cohomology of σ , $HB^n(\sigma)$, is given as the total cohomology of this complex. $HB^n(\sigma) := H^n(\text{Tot } RR_{\text{bar}}(\sigma))$.

Definition

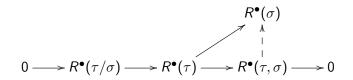
An algebra surjection $\sigma : A \to B$ is said to be *coH-unital* when $HB^n(\sigma) = 0$ for all *n*.

Future Projects and Applications

Given an exact sequence in \mathcal{S}_{\Bbbk} ,

$$0 \to \sigma \xrightarrow{(f_1, f_2)} \tau \xrightarrow{(g_1, g_2)} \tau / \sigma \to 0$$

we can define the relative bridge cocomplex, $R^{\bullet}(\tau, \sigma)$, as the cokernel



Future Projects and Applications

Theorem (Excision (conjectured)) Given an exact sequence in S_k ,

$$0 \to \sigma \xrightarrow{(f_1, f_2)} \tau \xrightarrow{(g_1, g_2)} \tau / \sigma \to 0$$

with τ and τ/σ unital, then the map $R^{\bullet}(\tau, \sigma) \to R^{\bullet}(\sigma)$ is a quasi-isomorphism if and only if σ is coH-unital.

Research Goal

Generalize the Gysin-Connes sequence to bridge cohomology

$$\dots \xrightarrow{l} HH^{n-1}(A) \xrightarrow{B} HC^{n-2}(A) \xrightarrow{S} HC^{n}(A) \xrightarrow{l} HH^{n}(A) \to \dots$$

Future Projects and Applications

Research Goal

Correlate bridge cohomology and de Rham Homology on manifolds with boundary: (L.,M.,P.) for M compact and $C^{\infty}(M) \xrightarrow{\sigma} \mathscr{E}^{\infty}(\partial M)$,

 $HR(\sigma) \cong B^{-1}(\mathscr{D}'_{k-1}(M;\partial M)) \oplus H^{dR}_{k-2}(M;\partial M) \oplus H^{dR}_{k-4}(M;\partial M) \oplus \dots$

Extend the pairings $\langle K_0(A), HC^e(A) \rangle$ and $\langle K_1(A), HC^o(A) \rangle$ from Connes, to manifolds with boundaries.

Future Projects and Applications

Research Goal (Exterior Differential Systems)

Given a system of PDE's, $F^k(x, y, \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}) = 0$, we can reformulate the problem of looking for solutions to this system in terms of looking for integral submanifolds $N \xrightarrow{i} M$, such that $i^*\mathcal{I} = 0$, where M is some suitably chosen jet space, and \mathcal{I} is a differential ideal

$$0
ightarrow \mathcal{I}
ightarrow \Omega(M)
ightarrow \Omega(M) / \mathcal{I}
ightarrow 0$$

that corresponds with the original system of PDE's.

Using the techniques developed, we now have a cohomology theory to apply to this situation. The question is, what type of information (if any) in terms of integrability can determined by it's cohomology groups?

Thank You!